Tau Ceti Planetary System - A Habitable Planetary System

 Tau Ceti Planetary system


Principal factors driving research interest in Tau Ceti are its vicinity, its Sun-like prominence, and the implications for probable life on its planets. Tau Ceti suits the second category, given its similar mass and low mutability, but relative lack of metals. The similarities have stimulated popular culture references for decades, as well as scientific investigations.



Image : Tau Ceti Planetary System

Image credit: Pablo Carlos Budassi

Licensed under : CC BY-SA 4.0

In 1988, radial-velocity observations ruled out any periodical changes attributable to huge planets around Tau Ceti inside of Jupiter-like distances. Ever more proper measurements continue to rule out such planets, at least until December 2012. The velocity precision reached is about 11 m/s surveyed over a 5-year time span. This result excludes hot Jupiters and possibly excludes any planets with minimal mass greater than or equal to Jupiter's mass and with orbital periods less than 15 years. In addition, a metering of nearby stars by the Hubble Space Telescope's Wide Field and Planetary Camera was finished in 1999, including a investigation for faint companions to Tau Ceti; none were found to limits of the telescope's resolving power.


However, these searches only excluded larger brown dwarf bodies and closer orbiting giant planets, so smaller, Earth-like planets in orbit around the star, like those discovered in 2012, were not precluded. If hot Jupiters were to exist in close orbit, they would likely disrupt the star's habitable zone; their exclusion was thus considered positive for the possibility of Earth-like planets. General research has shown a positive correlation between the presence of planets and a relatively high-metallicity parent star, suggesting that stars with lower metallicity such as Tau Ceti have a lower chance of having planets.


On December 19, 2012, evidence was presented that suggested a system of five planets orbiting Tau Ceti. The planets' estimated minimal masses were between 2 and 6 Earth masses, with orbital periods ranging from 14 to 640 days. One of them, Tau Ceti e, appears to orbit about half as far from Tau Ceti as Earth does from the Sun. With Tau Ceti's luminosity of 52% that of the Sun and a distance from the star of 0.552 AU, the planet would receive 1.71 times as much stellar radiation as Earth does, slightly less than Venus with 1.91 times Earth's. Nevertheless, some research places it within the star's habitable zone. The Planetary Habitability Laboratory has estimated that Tau Ceti f, which receives 28.5% as much starlight as Earth, would be within the star's habitable zone, albeit narrowly.


The discovery team refined their methodology, improved their radial-velocity measurements, and published their new results in August 2017. They confirmed Tau Ceti e and f as candidates but failed to consistently detect planets b (which may be a false negative), c (whose weakly defined apparent signal was correlated to stellar rotation), and d (which did not show up in all data sets). Instead, they found two new planetary candidates, g and h, with orbits of 20 and 49 days. The updated 4-planet model is dynamically packed and potentially stable for billions of years.


However, with further refinements, even more candidate planets have been detected. In 2019, a paper published in Astronomy & Astrophysics suggested that Tau Ceti could have a Jupiter or super-Jupiter based on a tangential astrometric velocity of around 11.3 m/s. The exact size and position of this conjectured object have not been determined, though it is at most 5 Jupiter masses if it orbits between 3 and 20 AU.  A 2020 Astronomical Journal study by astronomers Jeremy Dietrich and Daniel Apai analyzed the orbital stability of the known planets and, considering statistical patterns identified from hundreds of other planetary systems, explored the orbits in which the presence of additional, yet-undetected planets are most likely. This analysis predicted three planet candidates at orbits coinciding with planet candidates b, c, and d. The close match between the independently predicted planet periods and the periods of the three planet candidates previously identified in radial velocity data strongly supports the genuine planet nature of candidates b, c, and c. Furthermore, the study also predicts at least one yet-undetected planet between planets e and f, i.e., within the habitable zone. This predicted exoplanet is identified as PxP-4. The signals detected from the candidate planets have radial velocities as low as 30 cm/s, and the experimental method used in their detection, as it was applied to HARPS, could in theory have detected down to around 20 cm/s.


If Tau Ceti is aligned in such a way that it is nearly pole-on to Earth (as its rotation could indicate), its planets would be less similar to Earth's mass and more to Neptune, Saturn, or Jupiter. For example, were Tau Ceti f's orbit inclined 70 degrees from being face-on to Earth, its mass would be 4.18(+1.12/−1.46) Earth masses, making it a middle-to-low end super-Earth. However, these scenarios aren't necessarily true; since Tau Ceti's debris disk has an inclination of 35±10, the planets' orbits could be similarly inclined. If the debris disk and f's orbits were assumed to be equal, f would be between 5.56(+1.48/−1.94) and 9.30(+2.48/−3.24) Earth masses, making it slightly more likely to be a mini-Neptune.


Tau Ceti e


Tau Ceti e is a confirmed planet orbiting Tau Ceti that was detected by statistical analyses of the data of the star's variations in radial velocity that were obtained using HIRES, AAPS, and HARPS. Its possible properties were refined in 2017: it orbits at a distance of 0.552 AU (between the orbits of Venus and Mercury in the Solar System) with an orbital period of 168 days and has a minimum mass of 3.93 Earth masses. If Tau Ceti e possessed an Earth-like atmosphere, the surface temperature would be around 68 °C (154 °F).[56] Based upon the incident flux upon the planet, a study by Güdel et al. (2014) speculated that the planet may lie outside the habitable zone and closer to a Venus-like world.


Tau Ceti f


Tau Ceti f is a confirmed super-Earth orbiting Tau Ceti that was discovered in 2012 by statistical analyses of the star's variations in radial velocity, based on data obtained using HIRES, AAPS, and HARPS. It is of interest because its orbit places it in Tau Ceti's extended habitable zone. However, a 2015 study implies that it has been in the temperate zone for less than one billion years, so there may not be a detectable biosignature.


Few properties of the planet are known other than its orbit and mass. It orbits Tau Ceti at a distance of 1.35 AU (near Mars's orbit in the Solar System) with an orbital period of 642 days and has a minimum mass of 3.93 Earth masses.


Debris disk


In 2004, a team of UK astronomers led by Jane Greaves discovered that Tau Ceti has more than ten times the amount of cometary and asteroidal material orbiting it than does the Sun. This was determined by measuring the disk of cold dust orbiting the star produced by collisions between such small bodies. This result puts a damper on the possibility of complex life in the system, because any planets would suffer from large impact events roughly ten times more frequently than Earth. Greaves noted at the time of her research that "it is likely that [any planets] will experience constant bombardment from asteroids of the kind believed to have wiped out the dinosaurs". Such bombardments would inhibit the development of biodiversity between impacts. However, it is possible that a large Jupiter-sized gas giant (such as the proposed planet "i") could deflect comets and asteroids. 


The debris disk was discovered by measuring the amount of radiation emitted by the system in the far infrared portion of the spectrum. The disk forms a symmetric feature that is centered on the star, and its outer radius averages 55 AU. The lack of infrared radiation from the warmer parts of the disk near Tau Ceti implies an inner cut-off at a radius of 10 AU. By comparison, the Solar System's Kuiper belt extends from 30 to 50 AU. To be maintained over a long period of time, this ring of dust must be constantly replenished through collisions by larger bodies. The bulk of the disk appears to be orbiting Tau Ceti at a distance of 35–50 AU, well outside the orbit of the habitable zone. At this distance, the dust belt may be analogous to the Kuiper belt that lies outside the orbit of Neptune in the Solar System. 


Tau Ceti shows that stars need not lose large disks as they age, and such a thick belt may not be uncommon among Sun-like stars. Tau Ceti's belt is only 1/20 as dense as the belt around its young neighbor, Epsilon Eridani. The relative lack of debris around the Sun may be the unusual case: one research-team member suggests the Sun may have passed close to another star early in its history and had most of its comets and asteroids stripped away. Stars with large debris disks have changed the way astronomers think about planet formation because debris disk stars, where dust is continually generated by collisions, appear to form planets readily.


Habitability


Tau Ceti's habitable zone—the locations where liquid water could be present on an Earth-sized planet—spans a radius of 0.55–1.16 AU, where 1 AU is the average distance from the Earth to the Sun. Primitive life on Tau Ceti's planets may reveal itself through an analysis of atmospheric composition via spectroscopy, if the composition is unlikely to be abiotic, just as oxygen on Earth is indicative of life.


The most optimistic search project to date was Project Ozma, which was intended to "search for extraterrestrial intelligence" (SETI) by examining selected stars for indications of artificial radio signals. It was run by the astronomer Frank Drake, who selected Tau Ceti and Epsilon Eridani as the initial targets. Both are located near the Solar System and are physically similar to the Sun. No artificial signals were found despite 200 hours of observations. Subsequent radio searches of this star system have turned up negative.


This lack of results has not dampened interest in observing the Tau Ceti system for biosignatures. In 2002, astronomers Margaret Turnbull and Jill Tarter developed the Catalog of Nearby Habitable Systems (HabCat) under the auspices of Project Phoenix, another SETI endeavour. The list contained more than 17000 theoretically habitable systems, approximately 10% of the original sample. The next year, Turnbull would further refine the list to the 30 most promising systems out of 5000 within 100 light-years from the Sun, including Tau Ceti; this will form part of the basis of radio searches with the Allen Telescope Array. She chose Tau Ceti for a final shortlist of just five stars suitable for searches by the (indefinitely postponed) Terrestrial Planet Finder telescope system, commenting that "these are places I'd want to live if God were to put our planet around another star".


Host Star


Image : The Sun (left) is both larger and somewhat hotter than the less active Tau Ceti (right).

Image credit : R.J. Hall

Licensed under CC-BY-SA-0.3

Tau Ceti, Latinized from τ Ceti, is a single star in the constellation Cetus that is spectrally similar to the Sun, although it has only about 78% of the Sun's mass. At a distance of just under 12 light-years (3.7 parsecs) from the Solar System, it is a relatively nearby star and the closest solitary G-class star. The star appears stable, with little stellar variation, and is metal-deficient.


Observations have detected more than ten times as much dust surrounding Tau Ceti as is present in the Solar System. Since December 2012, there has been evidence of at least four planets—all confirmed being super-Earths—orbiting Tau Ceti, with two of these being potentially in the habitable zone. There are an additional four unconfirmed planets, one of which is a Jovian planet between 3 and 20 AU from the star. Because of its debris disk, any planet orbiting Tau Ceti would face far more impact events than Earth. Despite this hurdle to habitability, its solar analog (Sun-like) characteristics have led to widespread interest in the star. Given its stability, similarity and relative proximity to the Sun, Tau Ceti is consistently listed as a target for the Search for Extra-Terrestrial Intelligence (SETI) and appears in some science fiction literature.

Comments

Post a Comment